Adversarial Learning of Cancer Tissue Representations
نویسندگان
چکیده
Deep learning based analysis of histopathology images shows promise in advancing the understanding tumor progression, micro-environment, and their underpinning biological processes. So far, these approaches have focused on extracting information associated with annotations. In this work, we ask how much can be learned from tissue architecture itself.
منابع مشابه
Learning Anonymized Representations with Adversarial Neural Networks
Statistical methods protecting sensitive information or the identity of the data owner have become critical to ensure privacy of individuals as well as of organizations. This paper investigates anonymization methods based on representation learning and deep neural networks, and motivated by novel informationtheoretical bounds. We introduce a novel training objective for simultaneously training ...
متن کاملAn Adversarial Neuro-Tensorial Approach For Learning Disentangled Representations
Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation, to mention a few. Each factor accounts for a source of variability in the data, while the multiplicative interactions of these factors emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved factors fr...
متن کاملAdversarial Manipulation of Deep Representations
We show that the representation of an image in a deep neural network (DNN) can be manipulated to mimic those of other natural images, with only minor, imperceptible perturbations to the original image. Previous methods for generating adversarial images focused on image perturbations designed to produce erroneous class labels, while we concentrate on the internal layers of DNN representations. I...
متن کاملCombating Adversarial Attacks Using Sparse Representations
It is by now well-known that small adversarial perturbations can induce classification errors in deep neural networks (DNNs). In this paper, we make the case that sparse representations of the input data are a crucial tool for combating such attacks. For linear classifiers, we show that a sparsifying front end is provably effective against `∞-bounded attacks, reducing output distortion due to t...
متن کاملGeneralizing Adversarial Reinforcement Learning
Reinforcement Learning has been used for a number of years in single agent environments. This article reports on our investigation of Reinforcement Learning techniques in a multi-agent and adversarial environment with continuous observable state information. Our framework for evaluating algorithms is two-player hexagonal grid soccer. We introduce an extension to Prioritized Sweeping that allows...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-87237-3_58